1. Kinematika Gerak
A. GERAK LURUS
1.1 Gerak Lurus Beraturan
Suatu benda dikatakan melakukan gerak lurus beraturan jika kecepatannya selalu konstan. Kecepatan konstan artinya besar kecepatan alias kelajuan dan arah kecepatan selalu konstan. Karena besar kecepatan alias kelajuan dan arah kecepatan selalu konstan maka bisa dikatakan bahwa benda bergerak pada lintasan lurus dengan kelajuan konstan.
Misalnya sebuah mobil bergerak lurus ke arah timur dengan kelajuan konstan 10 m/s. Ini berarti mobil bergerak lurus ke arah timur sejauh 10 meter setiap sekon. Karena kelajuannya konstan maka setelah 2 sekon, mobil bergerak lurus ke arah timur sejauh 20 meter, setelah 3 sekon mobil bergerak lurus ke arah timur sejauh 30 meter… dan seterusnya… bandingkan dengan gambar di samping. Perhatikan besar dan arah panah. Panjang panah mewakili besar kecepatan alias kelajuan, sedangkan arah panah mewakili arah kecepatan. Arah kecepatan mobil = arah perpindahan mobil = arah gerak mobil.
Perhatikan bahwa ketika dikatakan kecepatan, maka yang dimaksudkan adalah kecepatan sesaat. Demikian juga sebaliknya, ketika dikatakan kecepatan sesaat, maka yang dimaksudkan adalah kecepatan.
Ketika sebuah benda melakukan gerak lurus beraturan, kecepatan benda sama dengan kecepatan rata-rata. Kok bisa ya ? yupz. Dalam gerak lurus beraturan (GLB) kecepatan benda selalu konstan. Kecepatan konstan berarti besar kecepatan (besar kecepatan = kelajuan) dan arah kecepatan selalu konstan. Besar kecepatan atau kelajuan benda konstan atau selalu sama setiap saat karenanya besar kecepatan atau kelajuan pasti sama dengan besar kecepatan rata-rata. Bingun ? pahami contoh berikut…
Ketika ulangan fisika pertama, saya mendapat nilai 10. Ulangan fisika kedua, saya mendapat nilai 10. Berapa nilai rata-rata ? nilai rata-rata = (10 + 10) / 2 = 20/2 = 10
Nilai fisika anda selalu 10 jadi rata-ratanya juga 10. Demikian halnya dengan benda yang bergerak dengan kelajuan konstan. Kelajuan benda selalu konstan atau selalu sama sehingga kelajuan rata-rata juga sama. Kalau benda bergerak dengan kelajuan konstan 10 m/s maka kelajuan rata-ratanya juga 10 m/s.
Grafik Gerak Lurus Beraturan
Grafik sangat membantu kita dalam menafsirkan suatu hal dengan mudah dan cepat. Untuk memudahkan kita menemukan hubungan antara Kecepatan, perpindahan dan waktu tempuh maka akan sangat membantu jika digambarkan grafik hubungan ketiga komponen tersebut.
Grafik Kecepatan terhadap Waktu (v-t)
Berdasarkan grafik di atas, tampak bahwa besar kecepatan bernilai tetap pada tiap satuan waktu. Besar kecepatan tetap ditandai oleh garis lurus, berawal dari t = 0 hingga t akhir.
Contoh : perhatikan grafik kecepatan terhadap waktu (v-t) di bawah ini
Besar kecepatan benda pada grafik di atas adalah 3 m/s. 1, 2, 3 dstnya adalah waktu tempuh (satuannya detik). Amati bahwa walaupun waktu berubah dari 1 detik sampai 5, besar kecepatan benda selalu sama (ditandai oleh garis lurus).
Bagaimana kita mengetahui besar perpindahan benda melalui grafik di atas ? luas daerah yang diarsir pada grafik di atas sama dengan besar perpindahan yang ditempuh benda. Jadi, untuk mengetahui besarnya perpindahan, hitung saja luas daerah yang diarsir. Tentu saja satuan perpindahan adalah satuan panjang, bukan satuan luas.
Dari grafik di atas, v = 5 m/s, sedangkan t = 3 s. Dengan demikian, besar perpindahan yang ditempuh benda = (5 m/s x 3 s) = 15 m. Cara lain menghitung besar perpindahan adalah menggunakan persamaan GLB. s = v t = 5 m/s x 3 s = 15 m.
Persamaan GLB yang kita gunakan untuk menghitung besar perpindahan di atas berlaku jika gerakan benda memenuhi grafik tersebut. Pada grafik terlihat bahwa pada saat t = 0 s, maka v = 0. Artinya, pada mulanya benda diam, baru kemudian bergerak dengan kecepatan sebesar 5 m/s. Padahal dapat saja terjadi bahwa saat awal kita amati benda sudah dalam keadaan bergerak, sehingga benda telah memiliki posisi awal s0. Untuk itu lebih memahami hal ini, pelajari grafik di bawah ini.
Grafik Perpindahan terhadap Waktu (x-t)
Grafik posisi terhadap waktu, di mana posisi awal x0 berhimpit dengan titik acuan nol.
Makna grafik di atas adalah bahwa besar kecepatan selalu tetap. Anda jangan bingung dengan kemiringan garis yang mewakili kecepatan. Makin besar nilai x, makin besar juga nilai t sehingga hasil perbandingan x dan y selalu sama.
Contoh : Perhatikan contoh grafik posisi terhadap waktu (x – t) di bawah ini
Bagaimanakah cara membaca grafik ini ?
Pada saat t = 0 s, besar perpindahan yang ditempuh oleh benda = x = 0. Pada saat t = 1 s, besar perpindahan yang ditempuh oleh benda = 2 m. Pada saat t = 2 s, besar perpindahan yang ditempuh oleh benda = 4 m. Pada saat t = 3 s, besar perpindahan yang ditempuh oleh benda = 6 m dan seterusnya. Berdasarkan hal ini dapat kita simpulkan bahwa benda bergerak dengan kecepatan konstan sebesar 2 m/s.
Grafik posisi terhadap waktu, di mana posisi awal x0 tidak berhimpit dengan titik acuan nol.
Contoh soal 1 :
Sebuah pesawat, terbang dengan kecepatan konstan 100 km/jam ke arah timur. Berapa jarak tempuh pesawat setelah 1 jam ? tentukan kecepatan pesawat dan jarak yang ditempuh pesawat setelah 30 menit…
Pembahasan :
Kelajuan pesawat 100 km/jam. Ini berarti pesawat bergerak sejauh 100 km setiap jam. Setelah 1 jam, pesawat bergerak sejauh 100 km.
Kecepatan pesawat setelah 30 menit ? pesawat bergerak ke timur karenanya arah gerakan pesawat = arah kecepatan pesawat = ke timur. Besar kecepatan alias kelajuan pesawat selalu konstan, karenanya kelajuan pesawat setiap saat selalu 100 km/jam.
Contoh soal 2 :
Sebuah mobil bergerak pada lintasan lurus dengan kelajuan konstan 40 km/jam. Tentukan selang waktu yang dibutuhkan mobil untuk menempuh jarak 10 km…
Pembahasan :
Mobil bergerak dengan kelajuan konstan 40 km/jam. Ini berarti mobil bergerak sejauh 40 km setiap jam (1 jam = 60 menit)
Setelah 60 menit, mobil bergerak sejauh 40 km
Setelah 30 menit, mobil bergerak sejauh 20 km
Setelah 15 menit, mobil bergerak sejauh 10 km
Jadi selang waktu yang dibutuhkan mobil untuk menempuh jarak 10 km = 15 menit.
Contoh soal 3 :
Seekor burung merpati terbang lurus sejauh 50 km setiap 1 jam. Berapa kelajuan burung merpati setelah 2 jam ?
Pembahasan :
Burung merpati terbang sejauh 50 km setiap 1 jam = 50 km per jam = 50 km/jam.
Setelah 2 jam, burung merpati terbang sejauh 100 km. Kelajuannya berapa ? kelajuannya tetap 50 km/jam.
Contoh soal 4 :
Dua mobil saling mendekat pada lintasan lurus paralel. Masing-masing mobil bergerak dengan laju tetap 80 km/jam. Jika pada awalnya jarak antara kedua mobil tersebut 20 km, berapa waktu yang diperlukan kedua mobil tersebut untuk bertemu ?
Pembahasan :
Sebelum bertemu, kedua mobil bergerak pada lintasan lurus sejauh 10 km.
Kedua mobil bergerak dengan laju tetap 80 km/jam. Ini berarti kedua mobil bergerak sejauh 80 km setiap jam atau mobil bergerak sejauh 80 km setiap 60 menit (1 jam = 60 menit)
Mobil bergerak sejauh 80 km dalam 60 menit, Mobil bergerak sejauh 40 km dalam 30 menit
Mobil bergerak sejauh 20 km dalam 15 menit, Mobil bergerak sejauh 10 km dalam 7,5 menit.
Salah satu mobil bergerak sejauh 10 km dalam 7,5 menit; salah satu mobil bergerak sejauh 10 km dalam 7,5 menit. Karena pada awalnya jarak antara kedua mobil = 20 km, maka kita bisa mengatakan bahwa kedua mobil bertemu setelah bergerak selama 7,5 menit. 7,5 menit = 7,5 (60 s) = 450 sekon.
1.2 Gerak Lurus Berubah Beraturan
Suatu benda dikatakan melakukan gerak lurus berubah beraturan (GLBB) jika percepatannya selalu konstan. Percepatan merupakan besaran vektor (besaran yang mempunyai besar dan arah). Percepatan konstan berarti besar dan arah percepatan selalu konstan setiap saat. Walaupun besar percepatan suatu benda selalu konstan tetapi jika arah percepatan selalu berubah maka percepatan benda tidak konstan. Demikian juga sebaliknya jika arah percepatan suatu benda selalu konstan tetapi besar percepatan selalu berubah maka percepatan benda tidak konstan.
Karena arah percepatan benda selalu konstan maka benda pasti bergerak pada lintasan lurus. Arah percepatan konstan = arah kecepatan konstan = arah gerakan benda konstan = arah gerakan benda tidak berubah = benda bergerak lurus.Besar percepatan konstan bisa berarti kelajuan bertambah secara konstan atau kelajuan berkurang secara konstan. Ketika kelajuan benda berkurang secara konstan, kadang kita menyebutnya sebagai perlambatan konstan. Untuk gerakan satu dimensi (gerakan pada lintasan lurus), kata percepatan digunakan ketika arah kecepatan = arah percepatan, sedangkan kata perlambatan digunakan ketika arah kecepatan dan percepatan berlawanan.
Contoh 1 : Besar percepatan konstan (kelajuan benda bertambah secara konstan)
Misalnya mula-mula mobil diam. Setelah 1 detik, mobil bergerak dengan kelajuan 2 m/s. Setelah 2 detik mobil bergerak dengan kelajuan 4 m/s. Setelah 3 detik mobil bergerak dengan kelajuan 6 m/s. Setelah 4 detik mobil bergerak dengan kelajuan 8 m/s. Dan seterusnya… Tampak bahwa setiap detik kelajuan mobil bertambah 2 m/s. Kita bisa mengatakan bahwa mobil mengalami percepatan konstan sebesar 2 m/s per sekon = 2 m/s2.
Contoh 2 : Besar perlambatan konstan (kelajuan benda berkurang secara konstan)
Misalnya mula-mula benda bergerak dengan kelajuan 10 km/jam. Setelah 1 detik, benda bergerak dengan kelajuan 8 km/jam. Setelah 2 detik benda bergerak dengan kelajuan 6 km/jam. Setelah 3 detik benda bergerak dengan kelajuan 4 km/jam. Setelah 4 detik benda bergerak dengan kelajuan 2 km/jam. Setelah 5 detik benda berhenti. Tampak bahwa setiap detik kelajuan benda berkurang 2 km/jam. Kita bisa mengatakan bahwa benda mengalami perlambatan konstan sebesar 2 km/jam per sekon.
Perhatikan bahwa ketika dikatakan percepatan, maka yang dimaksudkan adalah percepatan sesaat. Demikian juga sebaliknya, ketika dikatakan percepatan sesaat, maka yang dimaksudkan adalah percepatan. Nah, dalam gerak lurus berubah beraturan (GLBB), percepatan benda selalu konstan setiap saat, karenanya percepatan benda sama dengan percepatan rata-ratanya. Jadi besar percepatan = besar percepatan rata-rata. Demikian juga, arah percepatan = arah percepatan rata-rata.
Dalam kehidupan sehari-hari sangat sulit ditemukan benda yang melakukan gerak lurus berubah beraturan, di mana perubahan kecepatannya terjadi secara teratur, baik ketika hendak bergerak dari keadaan diam maupun ketika hendak berhenti. walaupun demikian, banyak situasi praktis terjadi ketika percepatan konstan/tetap atau mendekati konstan, yaitu jika percepatan tidak berubah terhadap waktu (ingat bahwa yang dimaksudkan di sini adalah percepatan tetap, bukan kecepatan).
Penurunan Rumus Gerak Lurus Berubah Beraturan (GLBB)
Rumus dalam fisika sangat membantu kita dalam menjelaskan konsep fisika secara singkat dan praktis. Jadi cobalah untuk mencintai rumus, he2…. Dalam fisika, anda tidak boleh menghafal rumus. Pahami saja konsepnya, maka anda akan mengetahui dan memahami cara penurunan rumus tersebut. Hafal rumus akan membuat kita cepat lupa dan sulit menyelesaikan soal yang bervariasi….
Sekarang kita coba menurunkan rumus-rumus dalam Gerak Lurus Berubah Beraturan (GLBB). Pahami perlahan-lahan ya….
Pada penjelasan di atas, telah disebutkan bahwa dalam GLBB, percepatan benda tetap atau konstan alias tidak berubah. (kalau di GLB, yang tetap adalah kecepatan). Nah, kalau percepatan benda tersebut tetap sejak awal benda tersebut bergerak, maka kita bisa mengatakan bahwa percepatan sesaat dan percepatan rata-ratanya sama. Bisa ya ? ingat bahwa percepatan benda tersebut tetap setiap saat, dengan demikian percepatan sesaatnya tetap. Percepatan rata-rata sama dengan percepatan sesaat karena baik percepatan awal maupun percepatan akhirnya sama, di mana selisih antara percepatan awal dan akhir sama dengan nol.
Jika sudah paham, sekarang kita mulai menurunkan rumus-rumus alias persamaan-persamaan.
Pada pembahasan mengenai percepatan, kita telah menurunkan persamaan alias rumus percepatan rata-rata, di mana
t0 adalah waktu awal ketika benda hendak bergerak, t adalah waktu akhir. Karena pada saat t0 benda belum bergerak maka kita bisa mengatakan t0 (waktu awal) = 0. Nah sekarang persamaan berubah menjadi :
Satu masalah umum dalam GLBB adalah menentukan kecepatan sebuah benda pada waktu tertentu, jika diketahui percepatannya (sekali lagi ingat bahwa percepatan tetap). Untuk itu, persamaan percepatan yang kita turunkan di atas dapat digunakan untuk menyatakan persamaan yang menghubungkan kecepatan pada waktu tertentu (vt), kecepatan awal (v0) dan percepatan (a). sekarang kita obok2 persamaan di atas…. Jika dibalik akan menjadi
Ini adalah salah satu persamaan penting dalam GLBB, untuk menentukan kecepatan benda pada waktu tertentu apabila percepatannya diketahui. Jangan dihafal, pahami saja cara penurunannya dan rajin latihan soal biar semakin diingat….
Selanjutnya, mari kita kembangkan persamaan di atas (persamaan I GLBB) untuk mencari persamaan yang digunakan untuk menghitung posisi benda setelah waktu t ketika benda tersebut mengalami percepatan tetap.
Pada pembahasan mengenai kecepatan, kita telah menurunkan persamaan kecepataan rata-rataUntuk mencari nilai x, persamaan di atas kita tulis ulang menjadi :
Karena pada GLBB kecepatan rata-rata bertambah secara beraturan, maka kecepatan rata-rata akan berada di tengah-tengah antara kecepatan awal dan kecepatan akhir :
Persamaan ini berlaku untuk percepatan konstan dan tidak berlaku untuk gerak yang percepatannya tidak konstan. Kita tulis kembali persamaan a :
Persamaan ini digunakan untuk menentukan posisi suatu benda yang bergerak dengan percepatan tetap. Jika benda mulai bergerak pada titik acuan = 0 (atau x0 = 0), maka persamaan 2 dapat ditulis menjadi
x = vot + ½ at2
Sekarang kita turunkan persamaan/rumus yang dapat digunakan apabila t (waktu) tidak diketahui. Kita tulis lagi persamaan a :
Terdapat empat persamaan yang menghubungkan posisi, kecepatan, percepatan dan waktu, jika percepatan (a) konstan, antara lain :
Persamaan di atas tidak berlaku jika percepatan tidak konstan.
GRAFIK GLBB
Grafik percepatan terhadap waktu
Gerak lurus berubah beraturan adalah gerak lurus dengan percepatan tetap. Oleh karena itu, grafik percepatan terhadap waktu (a-t) berbentuk garis lurus horisontal, yang sejajar dengan sumbuh t. lihat grafik a – t di bawah
Grafik kecepatan terhadap waktu (v-t) untuk Percepatan Positif
Grafik kecepatan terhadap waktu (v-t), dapat dikelompokkan menjadi dua bagian. Pertama, grafiknya berbentuk garis lurus miring ke atas melalui titik acuan O(0,0), seperti pada gambar di bawah ini. Grafik ini berlaku apabila kecepatan awal (v0) = 0, atau dengan kata lain benda bergerak dari keadaan diam.
Kedua, jika kecepatan awal (v0) tidak nol, grafik v-t tetap berbentuk garis lurus miring ke atas, tetapi untuk t = 0, grafik dimulai dari v0. lihat gambar di bawah
Nilai apa yang diwakili oleh garis miring pada grafik tersebut ?
Pada pelajaran matematika SMP, kita sudah belajar mengenai grafik seperti ini. Persamaan matematis y = mx + n menghasilkan grafik y terhadap x ( y sumbu tegak dan x sumbu datar) seperti pada gambar di bawah.
Kemiringan grafik (gradien) yaitu tangen sudut terhadap sumbu x positif sama dengan nilai m dalam persamaan y = n + m x.
Persamaan y = n + mx mirip dengan persamaan kecepatan GLBB v = v0 + at. Berdasarkan kemiripan ini, jika kemiringan grafik y – x sama dengan m, maka kita dapat mengatakan bahwa kemiringan grafik v-t sama dengan a.
Jadi kemiringan pada grafik kecepatan terhadap waktu (v-t) menyatakan nilai percepatan (a).
Grafik kecepatan terhadap waktu (v-t) untuk Perlambatan
Contoh grafik kecepatan terhadap waktu (v-t) untuk perlambatan dapat anda lihat pada gambar di bawah ini.
Grafik Kedudukan Terhadap Waktu (x-t)
Persamaan kedudukan suatu benda pada GLBB telah kita turunkan pada awal pokok bahasan ini, yakni x = xo + vot + ½ at2
Kedudukan (x) merupakan fungsi kuadrat dalam t. dengan demikian, grafik x – t berbentuk parabola. Untuk nilai percepatan positif (a > 0), grafik x – t berbentuk parabola terbuka ke atas, sebagaimana tampak pada gambar di bawah ini.
Apabila percepatan bernilai negatif (a < 0), di mana benda mengalami perlambatan, grafik x – t akan berbentuk parabola terbuka ke bawah.
Pertanyaan piter :
Tolong kasih penjelan untuk soal ini yach,,he,,he,
1. x(t ) = 4t3 + 8t² + 6t – 5
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?
a. Berapa kecepatan rata-rata pada t0.5 dan
t 2.5
b. Berapa kecepatan sesaat pada t 2
b. Berapa percepatannya ratanya,?
Terimakasih,,he,,he,,salam gbu
Panduan jawaban :
a) Kecepatan rata-rata pada t = 0,5 dan t = 2,5
t1 = 0,5 dan t2 = 2,5
x1 = 4t3 + 8t² + 6t – 5
= 4(0,5)3 + 8(0,5)² + 6(0,5) – 5
= 4(0,125) + 8(0,25) + 6(0,5) – 5
= 0,5 + 2 + 3 – 5
= 0,5
x2 = 4t3 + 8t² + 6t – 5
= 4(2,5)3 + 8(2,5)² + 6(2,5) – 5
= 4(15,625) + 8(6,25) + 6(2,5) – 5
= 62,5 + 50 + 15 – 5
= 122,5
b) Kecepatan sesaat pada t = 2
v = 3(4t2) + 2(8t) + 6
v = 12t2 + 16t + 6
v = 12 (2)2 + 16(2) + 6
v = 48 + 32 + 6
v = 86
Kecepatan sesaat pada t = 2 adalah 86
c) Berapa percepatan rata-ratanya ?
v1 = 12t12 + 16t1 + 6
v2 = 12t22 + 16t2 + 6
De piter, t1 dan t2 berapa ?
Masukan saja nilai t1 dan t2 ke dalam persamaan v1 dan v2. Setelah itu cari arata-rata.
B. GERAK MELINGKAR
Ketika sebuah benda bergerak membentuk suatu lingkaran dengan laju tetap maka benda tersebut dikatakan melakukan gerak melingkar beraturan alias GMB.
Dapatkah kita mengatakan bahwa GMB merupakan gerakan yang memiliki kecepatan linear tetap ? Misalnya sebuah benda melakukan Gerak Melingkar Beraturan, seperti yang tampak pada gambar di bawah. Arah putaran benda searah dengan putaran jarum jam. bagaimana dengan vektor kecepatannya ? seperti yang terlihat pada gambar, arah kecepatan linear/tangensial di titik A, B dan C berbeda. Dengan demikian kecepatan pada GMB selalu berubah (ingat perbedaan antara kelajuan dan kecepatan, kelajuan adalah besaran skalar sedangkan kecepatan adalah besaran vektor yang memiliki besar/nilai dan arah) sehingga kita tidak dapat mengatakan kecepatan linear pada GMB tetap.
Pada gerak melingkar beraturan, besar kecepatan linear v tetap, karenanya besar kecepatan sudut juga tetap.
Jika arah kecepatan linear alias kecepatan tangensial selalu berubah, bagaimana dengan arah kecepatan sudut ? arah kecepatan sudut sama dengan arah putaran partikel, untuk contoh di atas arah kecepatan sudut searah dengan arah putaran jarum jam. Karena besar maupun arah kecepatan sudut tetap maka besaran vektor yang tetap pada GMB adalah kecepatan sudut. Dengan demikian, kita bisa menyatakan bahwa GMB merupakan gerak benda yang memiliki kecepatan sudut tetap.
Pada GMB, kecepatan sudut selalu tetap (baik besar maupun arahnya). Karena kecepatan sudut tetap, maka perubahan kecepatan sudut atau percepatan sudut bernilai nol. Percepatan sudut memiliki hubungan dengan percepatan tangensial, sesuai dengan persamaanKarena percepatan sudut dalam GMB bernilai nol, maka percepatan linear juga bernilai nol. Jika demikian, apakah tidak ada percepatan dalam Gerak Melingkar Beraturan (GMB) ?
Pada GMB tidak ada komponen percepatan linear terhadap lintasan, karena jika ada maka lajunya akan berubah. Karena percepatan linear alias tangensial memiliki hubungan dengan percepatan sudut, maka percepatan sudut juga tidak ada dalam GMB. Yang ada hanya percepatan yang tegak lurus terhadap lintasan, yang menyebabkan arah kecepatan linear berubah-ubah. Sekarang mari kita tinjau percepatan ini.
Percepatan Sentripetal
Percepatan tangensial didefinisikan sebagai perbandingan perubahan kecepatan dengan selang waktu yang sangat singkat, secara matematis dirumuskan sebagai berikut :
Sambil perhatikan gambar di atas. Jika kita tetapkan delta t sangat kecil (mendekati nol) maka delta x dan delta teta juga sangat kecil dan v2 akan nyaris sejajar dengan v1 sehingga delta v akan tegak lurus terhadap v1 dan v2. Dengan demikian arah delta v menuju pusat lingkaran.
Karena arah a sama dengan arah delta v maka arah a juga harus menuju pusat lingkaran. Nah, percepatan jenis ini dinamakan percepatan sentripetal alias percepatan radial dan kita beri lambang ar atau as. Disebut percepatan sentripetal (as) karena selalu “mencari pusat lingkaran”, disebut percepatan radial (ar) karena mempunyai arah sepanjang radius alias jari-jari lingkaran.
Sekarang kita turunkan persamaan untuk menentukan besar percepatan sentripetal alias percepatan radial.
Berdasarkan gambar di atas, tampak bahwa O x1 tegak lurus terhadap v1 dan O x2 tegak lurus terhadap v2. Dengan demikian, teta yang merupakan sudut antara O x1 dan O x2 juga merupakan sudt antara v1 dan v2. Dengan demikian v1, v2 dan delta v membentuk segitiga yang sama secara geometris dengan segitiga O x1 x2 pada gambar di atas. Sambil lihat gambar di bawah…
Kita tulis semua kecepatan dengan v karena pada GMB kecepatan tangensial benda sama (v1 = v2 = v).
Benda yang melakukan gerakan dengan lintasan berbentuk lingkaran dengan jari-jari (r) dan laju tangensial tetap (v) mempunyai percepatan yang arahnya menuju pusat lingkaran dan besarnya adalah :
Berdasarkan persamaan percepatan sentripetal tersebut, terlihat bahwa nilai percepatan sentripetal bergantung pada besar kecepatan tangensial dan radius alias jari-jari lintasan (lingkaran). Dengan demikian, semakin cepat laju gerakan melingkar, semakin cepat terjadi perubahan arah dan semakin besar radius, semakin lambat terjadi perubahan arah.
Arah vektor percepatan sentripetal selalu menuju ke pusat lingkaran, tetapi vektor kecepatan linear menuju arah gerak benda secara alami (lurus), sedangkan arah kecepatan sudut searah dengan putaran benda. Dengan demikian, vektor percepatan sentripetal dan kecepatan tangensial saling tegak lurus atau dengan kata lain pada Gerak Melingkar Beraturan arah percepatan dan kecepatan linear/tangensial tidak sama. Demikian juga arah percepatan sentripetal dan kecepatan sudut tidak sama karena arah percepatan sentripetal selalu menuju ke dalam/pusat lingkaran sedangkan arah kecepatan sudut sesuai dengan arah putaran benda (untuk kasus di atas searah dengan putaran jarum jam).
Kita dapat menyimpulkan bahwa dalam Gerak Melingkar Beraturan :
Pertama, besar kecepatan linear alias kecepatan tangensial adalah tetap, tetapi arah kecepatan linear selalu berubah setiap saat
Kedua, kecepatan sudut (baik besar maupun arah) selalu tetap setiap saat
Ketiga, percepatan sudut maupun percepatan tangensial bernilai nol
Keempat, dalam GMB hanya ada percepatan sentripetal
Periode dan Frekuensi
Gerak melingkar sering dijelaskan dalam frekuensi (f) sebagai jumlah putaran per detik. Periode (T) dari benda yang melakukan gerakan melingkar adalah waktu yang diperlukan untuk menyelesaikan satu putaran. Hubungan antara frekuensi dengan periode dinyatakan dengan persamaan di bawah ini :Dalam satu putaran, benda menempuh lintasan linear sepanjang satu keliling lingkaran (2 phi r), di mana r merupakan jarak tepi lingkaran dengan pusat lingkaran. Kecepatan linear merupakan perbandingan antara panjang lintasan linear yang ditempuh benda dengan selang waktu tempuh. Secara matematis dirumuskan sebagai berikut :
Karena T = 1/f maka persamaan besar kecepatan linear bisa ditulis seperti ini :
Selang waktu yang diperlukan benda untuk menempuh satu putaran (satu keliling lingkaran) adalah T. Besar sudut satu putaran = 360o. 360o = 2 phi
Karena T = 1/f maka persamaan besar kecepatan sudut dapat ditulis menjadi :
Sekarang kita tulis kembali persamaan Gerak Melingkar Beraturan (GMB) yang telah kita turunkan di atas ke dalam tabel di bawah ini :
Persamaan fungsi Gerak Melingkar Beraturan (GMB)
Pada Gerak Melingkar Beraturan, kecepatan sudut selalu tetap (baik besar maupun arahnya), di mana kecepatan sudut awal sama dengan kecepatan sudut akhir. Karena selalu sama, maka kecepatan sudut sesaat sama dengan kecepatan sudut rata-rata.
Kita telah mengetahui bahwa kecepatan sudut rata-rata dirumuskan sebagai berikut :
Contoh Soal 1 :
Sebuah bola bermassa 200 gram diikat pada ujung sebuah tali dan diputar dengan kelajuan tetap sehingga gerakan bola tersebut membentuk lingkaran horisontal dengan radius 0,2 meter. Jika bola menempuh 10 putaran dalam 5 detik, berapakah percepatan sentripetalnya ?
Panduan Jawaban :
Percepatan sentripetal dirumuskan dengan persamaan : ar = v2/r. Karena laju putaran bola belum diketahui, maka terlebih dahulu kita tentukan laju bola (v). Apabila bola menempuh 10 putaran dalam 5 detik maka satu putaran ditempuh dalam 0,5 detik, di mana ini merupakan periode putaran (T). Jarak lintasan yang ditempuh benda adalah keliling lingkaran = 2 phi r, di mana r = jari-jari/radius lingkaran. Dengan demikian, laju bola :
v = 2 (3,14)(0,2 m)(2 hertz) = ……. m/s
Percepatan sentripetal bola :
ar = v2/r
ar = ………….
Percepatan sentripetal jg bisa ditentukan secara langsung tanpa terlebih dahulu menentukan kelajuan bola.
Contoh Soal 2:
atu kali mengorbit bumi, bulan memerlukan waktu 27,3 hari. Jari-jari orbit bulan 384.000 km, berapakah percepatan bulan terhadap bumi ? (catatan : dalam GMB hanya ada percepatan sentripetal, sehingga jika ditanyakan percepatan, maka yang dimaksudkan adalah percepatan sentripetal)
Panduan Jawaban :
Ketika mengorbit bumi satu kali, bulan menempuh jarak 2phi r, di mana r = 3,84 x 108 meter merupakan radius jalur lintasannya (lingkaran). Periode T dalam satuan sekon adalah T = (27,3 hari)(24 jam)(3600 s/jam) = 2,36 x 106 s. Dengan demikian, percepatan sentripetal bulan terhadap bumi adalah :
Latihan Soal 3 :
Valentino Rosi mengendarai motornya melewati suatu tikungan yang berbentuk setengah lingkaran yang memiliki radius 20 meter. Jika laju sepeda motor 20 m/s, berapakah percepatan sepeda motor (dan The Doctor) ?
Panduan Jawaban :
Percepatan sentripetal sepeda motor + The Doctor adalah :
Tidak ada komentar:
Posting Komentar